Journal of Global Optimization, 11, 91-105 {1997)
® 1997 Kluwer Academic Publishers. Printed in The Netherlands.

A Stochastic/Perturbation Global Optimization
Algorithm for Distance Geometry Problems*

ZHIHONG ZOU, RICHARD H. BIRD, ROBERT B. SCHNABEL
BPepartment of Compuler Seience, University of Colorado, Boulder, Colorado 80309-0430. Email:
{zzou, richard, bobby}@cs.colorado.edu

Ahstract. We present a new global optimization approach for salving exactly or incxactly
constrained distance geometry problems. Distance geometry problems are concerned with deter-
mining spatial structures from measurements of internal distances. They arise in the structural
interpretation of nuclear magnetic resonance data and in the prediction of protein structure. These
problems can be naturally formulated as global optimization problems which generally are large
and difficult. The global optimization method that we present is related to our previous stochas-
tic/perturbation global optimization methods for finding minimum energy configurations, but has
several key differences that are important to its success. Our computational results show that
the method readily solves a set of artificial problems introduced by Moré and Wu that have up
to 343 atoms. On a set of considerably more difficult protein fragment problems introduced by
Hendrickson, the method solves all the problems with up to 377 atoms exactly, and finds nearly
exact solution for all the remaining problems which have up to 777 atoms. These preliminary
results indicate that this approach has very good promise for helping to solve distance geometry
problems.
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1. Introduction

Distance geometry problems, which are concerned with determining spatial struc-
tures from measurements of internal distances, arise in the structural interpreta-
tion of nuclear maguetic resunance data and in the prediction of protein structure.
Methods of calculating the conformations of biological molecules from distance
constraints have become an important tool in structural biochemistry. Solving the
distance geometry problem in this context would determine the three-dimensional
shape of the protein, which is critical for understanding its chemical and biological
properties. For general reviews of the distance geometry problem and its relation-
ship to the structure of chemical molecules, see Crippen and Havel[6], Havel[g],
Kuntz, Thomason and Oshiro[10],and Briinger and Nilges{1].

The distance geometry problem can be naturally formulated as a nonlinear global
optimization, where the objective function is construclted such Lhal the distance
constraints are satisfied at the global solutions of the problem. A simple objective
function can be defined to enforce the constraints. This optimization problem is
believed to be computationally intractable in general because it has been shown (o
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be strongly NP-complete in the one dimensional case [6, 13], and strongly NP-hard
in the higher dimension case [14].

A Targe number of such methods for solving distance gcometry problems have been
proposed, such as Crippen and Havel|6], Havel[8], Hendrickson[8], Glunt, Hayden,
Raydan[7], and Moré and Wu[l2, 13]. The method we present in this paper is
based on the stochastic/perturbation global optimization approach[1, 2, 3, 5] with
several new features., The purpose of this paper is to describe this approach and
to demonstrate its capabilities on some difficult distance geometry problemns. The
larger context of thie research 1= to continue to develop and understand the ca-
pabilities of the stochastic/perturbation global optimization methodology, which
we have found very successful for several large-scale global optimization problems
arising from molecular chemistry.

Our stochastic/perturbation algorithm combines a first, stochastic phase that
identifies an initial set of local minimizers, with a second, more deterministic phase
that moves from low to even lower local minimizers. In the second phase, by
incorporating the partially separable structure of the problem, we work on very
small-dimensional global optimization subproblems and then for local minimizers
in the full-dimensional space. Both the selection of small dimensional subpraoblems
and some other important algorithmic features are specific to the distance geometry
problem.

We experimented with anr algarithm nan Maré and Wu'’s artificial prahlems [19]
and on the protein fragment problems from Hendrickson{9]. For the artificial prob-
lems, even our first phase can find the exact solutions with great success. For the
protein fragment problems, which are eonsiderably more difficnlt, we have found
the exact solutions for problems with up to 377 atoms (1131 parameters).

Another important issue in dealing with distance constraints is that there may
not extst any molecular structure satisfying the given distance constraints, due to
measurement of experimental errors. In practice, lower and npper bonnds on dis-
tances are specified instead of exact distances. Therefore our algorithm is intended
to deal with both exact and inexact distance geometry problems. For the larger
protein problems of Hendrickson[9], with up to 777 atoms (2331 parameters), our
algorithm has found approximate solutions with maximum relative error of distauce
at most 0.04. These computational successes on problems of considerable size ap-
pear to indicate that our algorithm is a powerful tool for sclving distance geometry
problems.

The remainder of this paper is structured as follows. Section 2 describes distance
geometry problems and current approaches developed for these problems. In section
3, we describe the stochastic/perturbation algorithm used to deal with the distance
geometry problems. The framework of our algerithm is outlined, and several ne
features are discussed in the section. These are followed by extensive experimer
results for our method on distance geometry problems tn Section 4. Seet’
contalns some brief conclusions and comments about future research.
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2. The Distance Geometry Problems

As mentioned earlier, solving the dietance geometry problems is an important tool
in determining the three-ditnensional structure of a molecule. In the ideal case,
distance geometry problems are concerned with finding positions 21, 5, 25, 1n
R3 such that

| zi — 25 [|= 85, (1,7) € S. (2.1)

where § 18 a subset of the atom pairs, and &, (4,j) € § is the given distance
between atom iand j. Usually & has many fewer than m?/2 elements, that is only
a stnall suhset of pairwise distances is known.

There may not exist any solution @1, xs2, - -, &y, to these distance constraints, due
to the error in the theoretical or experimental data. For example, this is guaranteed
to happen if data for atoms £, j, & violate the triangle inequality.

In the more general distance geometry problem, lower and upper bounds on the
distances are specified instead of exact values. In this case, the distance geometry
problem is to find a set of positions xy,x9,-- -, &, satisfying

li,.’f S” Ti— & ”S ui,js(iﬁj) €S. (2.2)

where {; ; and u; ; are lower and upper bounds on the distance constraints, respec-
tively.

The distance geometry problems with constraints (2.1) and (2.2) can be naturally
phrased as a nonlinear global optimization problem. The objective function is
constructed so that the constraints are satisfied at the global minimizers of the
optimization problem. QOne simple approach, which we utilize in this paper, is
to penalize all the unsatisfied constraints. We formulate the distance geometry
problem in terms of finding the global minimizers of the function

f(.’u") = Z hi,j(ﬁg iﬂj), (23)
{{.j)es
where
PR - . i — o ||F —ul,
hij(z) = min*{ |z -f;; 85 ) 4 maar (2 ‘"’2” Yooy (24)
i Ui

This is the approach taken by Moré and Wu[l3]. In order to compare results with
thase in Moré and Wu[12], we also nse the following function for the exact problem:

fley=3 wiglll @i —a; |IF —62;)° (2.5)
(i.4)es

wherc w; ; arc positive weights. This function is the same as (2.4) for the exact
distanez geometry problems if &; = u;; = 6 ; and w;; = 5:‘_,;1- Clearly, z =
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{z1,22, -, £m} solves problem (2.2) if and only if z is the global minimizer of
f(z) in (2.4) and f(z) = 0. Similarly for problem (2.1}, a solution  is equivalent
to a global minimizer of the function (2.5) with function value 0.

The difficulty in solving the distance geometry problem arises from several sources.
First, the problem in itself is strongly NP-complete in one dimension, and strongly
NP-hard in higher dimension[6, 14, 13], thercfore it is very unlikely that an officient
algorithm for solving all cases of the problem can be found. Also there are huge
numbers of local minimizers for the functions (2.4) and (2.5), which makes it very
challenging to locate the basin of attraction of the global minimizer. It can be shown
that function (2.5) has an exponential number of Jocal minimizers[9]. Another
important aspect is that most distance geometry problems are large and contain
bundreds or more atoms. Thus even the calculation of a local minimizer makes
heavy demands on the computer time.

Most of the previous work by chemists on the distance geometry problems de-
pends an the intrinsic properties of the chemical structure of solutions. Often, these
nethods use special heuristics based on chemical properties to generate initial con-
figurations, and then perform local optimizations. The paper of Hendrickson[9]
is of partienlar interest to our work because the more difficult test problems that
we use are taken from that paper. Hendrickson’s method utilizes some complex
combinatorial structure inherent in the molecule problem. It works well on his test
problems, which are generated from bovine pancreatic ribonuclease, a protein con-
taining 124 amino acids, but relies on the assumption that the distances are highly
accurate.

In contrast, glabal optimization approaches to general distance geometry prob-
lems do not utilize information about the solution structure. While utilizing problem-
specific information may ultimately be desirable, it is important to understand the
capabilities of global optimization approaches for general distance geometry prob-
lems. Work of this type includes the multistart method and Moré and Wu’s con-
tinuation approach [12, 13]. In the former, a set of starting points are randomly
generated and local minimization is performed from them. This methad is simple
and easy to implement. But it is highly unreliable in the context of distance ge-
ometry because the problems are usually large and have a huge number of local
minimizers. In the continuation approach, the original function 1s transformed intn
a smoother function with fewer local minimizers. A series of local optimization
algorithms is then applied to the transformed function, tracing its minimizers back
to those of the original function. The experimental reanlts of Moré and Wu show
that this approach is markedly superior to the multistart method.

In the following section, we will describe our stochastic/perturbation algorithm
for the distance geometry problem. Our algorithm is a general global optimization
method, and applies to both exact and inexact problems. We do not utilize a
smoothing approach as in the work of Moré and Wu, but our approach could readily
be combined with smoothing techniques. Indeed, our experience with minimum
energy conformation problems is showing that the combination of smoothing and
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our stochastic/perturbation global optimization approach is a promising framewaork
(see e.g. [15]).

3. The Stochastic/Perturbation Global Optimization Method

Qur new algorithm for the distance geometry problems 1s based on the stochas-
tic/perturbation global optimization method, which was constructed to solve large-
scale global optimization problems. This approach has been successfully applied to
Lennard-Jones problemns [4], water clnster problems [2], and protein conformation
problems [3].

The basic framework of our global optimization method for distance geornetry
problems is outlined tn Algorithm 3.1 below. ‘l'he method combines an initial
phase that locates some low local minimizers with a second phase for moving from
low to even lower local minimizers. During the first phase, a full dimensional
random sample 1s generated over the domain space by randomly and independently
placing each atom. The worst configurations are discarded, and the better ones are
improved by selecting and moving an atorn or a pair of atoms, until the function
value for the configuration falls below a specified threshold level. A subset of
these improved configurations is used as start points for a full dimensional local
optimization algorithm. Some of the local minimizers found in this phase are passed
on to the second phase for improvement.

In the second phase, a local minimizer is successively selected for improvement
as discussed below. A pair of atoms is chosen, and a small-scale stochastic global
optimization algorithm is applied to the configuration with only these two atoms
as variables and the remainder of the configuration fixed. This is followed by full
dimensional local minimizations starting from the best configurations that resulted
from the small-scale global optimization step. The lowest new configurations are
then merged into the list of local minimizers, and this phase is iterated a fixed
number of times. _

A key feature of this approach is that both phases make use of strategies that
work on a very small subset of the atoms at once. In the initial phase this approach
is used to improve the sample points by sampling on only one atom or a pair of
atoms at a time in step 1b while leaving the remaining atoms temporarily fixed.
When a pair of atoms is chosen, it is a pair for which a constraint distance is
given in the problem formulation, that is an (x;,z;) for which (i,j) € §. We will
refer to this as a “constrained pair of atoms”. When a constrained pair of alowms
is used in step 1b, the sampling is done so that the distance between the atoms
1s always at the constraint value &; ;. In the second phase, this small subproblem
approach is used o move a constrained pair of aloms in an existing configuration to
new positions via the small-scale global optimization in step 2¢. This small global
optimization locates the best possible position for the selected atoms in the current
configuration with the remaining atois tewporarily fixed. Again, when step 2c
samples on the constrained pair of atoms, the distance between them is kept at
the constraint value. All these small subproblem steps are very eflicient due to the
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Algoarithm 3.1 — Framework of the Large-Scale Global Optimization
Algorithm for Distance Geometry Problems

Initial Generation of Configurations Phase :

{A) Sampling in Full Domain : Randomly generate the coordinates of the sample
points in the sampling domain, and evaluate f{r) at each new sample point.
Discard all sample points whose function value is above a global “cutoff level”.

{B) One-atom/two-atom Sampling Tmiprovement : For each remaining sample
point : While the energy of the sample point is above the threshold value, Repeat:

e Select the atom that conbributes mosi io the function value or a pair of atoms
in & that violates the ideal distance most

¢ Randomly sample on the location of the selected atoms

. Replace the atoms in the sample point with the new sample coordinates that
give the lowest energy valne.

(C) Start Point Selection : Select a subset of the improved sample points from
step 1b to be start points for local minimizations.

(D} Full-Dimensional Local Minimizations: Perform a local minimization from
each start point selected in step lc. Collect some number of the best of these
minimizers for improvement in Phase 2.

Improvement of Local Minimizers Phase: For some number of iterations:

(A) Select a Configuration : ;From the list of full-dimensional local minimizers,
select the local minimizer and a pair of atoms in § to be optimized.

(B) Expansion : Transform the configuration by multiplying the position of each
atom relative to the center of mass of the configuration by a constant factor of
between 1.25 and 2.0 or larger.

(C) Two-atom Small Global Optimization : Apply a global optimization alge-
rithm to the expanded configuration with only the two atoms chosen in step 2a
as variables.

{D) Full-Dimensional Local Minimization : Apply a local minimization proce-
dure, using all the atoms as variables, to the lowest configurations that resulted
from the two-atom global optimization.

(E) Merge the New Local Minimizers : Merge the new lowest configurations
into the existing list of local minimizers.
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partial separability of the objective functions for the distance geometry problemn,
which make the cost of evaluating the function when only one or two atoms are
moved much less expensive than the cost of a full function evaluation.

The atom or pair of atoms that is chosen in each of these small-scale steps is
one for which there seems to be potential for improving the overall configuration
by moving this atom or pair. In Phase 1, the atom which contributes most to
the overall function value (and thus appears to have the greatest potential for
reducing the function value) is selected. In Phase 2 and alternatively in Phase 1,
the constrained pair of atoms that has the waorst violation from the ideal distance is
selected. In our early experiments, we also employed a one-atom small-scale global
optimization heuristic in the second phase. The experimental results suggested
that for some difficult problems the two-atom approach is more effective and that
it locates lower configurations than the one-atom strategy, while for many other
problemns the two strategies are about equally effective. For this reason we have
used the two-atom approach in Phase 2. It may be that in some cases, moving only
one atom is not enough to force the configuration out of the region of attraction of
the current local minimizer,

The choice of which local minimizer to improve in Phase 2 is an important heuris-
tic in this methad. Through our experimentation on previous problems, we have
concluded that a strategy that balances selecting a breadth of confignrations with
working on the best current configurations is most effective. This is the approach
we have used for the distance geometry problem.

Another important feature in Algorithm 3.1 is the expansion step, step b of Phase
2, which expands the configuration around its center of mass prior to the small-
scale global optimization. The expansion step was used first with minimum energy
water cluster problems, where it significantly improved the ability of the Phase 2
iteration to find improved configurations. This improvement apparently is due to
expansion creating more room to move the atom or atems that are the variables
in the small-scale global optimization. The local optimization step then contracts
the configuration again, into a new and hopefully improved local minimizer. The
physical analogy of expansion is to heating in annealing. The drawback of expansion
1s that the local minimizations in Phase 2 becorne more expensive.

Our initial intuition was that the expansion would not be appropriate for dis-
tance geometry problems, because it leads to large violations in all the distance
constraints. But we found that the algorithm without the expansion step didn’t
perform well in Phase 2; after step 2d, most of the configurations returned to the
local minimizer that the step had started with in step 2a. Possibly this is due to
the relatively small number of constraints in distance geometry problems, which
means that each atom is only involved in a small number of distance constraints.
Therefore moving only the pair of atoms doesn’t chauge the configuration suffi-
ciently from the current local minimum. We found that when the expansion step is
added, the small-scale global optimization step is far more successful at producing
significantly different, and improved, configurations. We have experimented with
different expansion factors in the range 1.25 to 2.5. For most of the problems, an
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expansion factor between 1.25 and 2.0 is most eflective, but for some problems, an
expansion factor between 2.0 and 2.5 is more helpful, In order to be consistent
with the stochastic aspect of our algorithm, for most of the test problems in next
section, the expansion factor is chosen randomly between 1.25 and 2.0.

A final useful feature in our implementation, which is not captured in Algorithm
3.1, is a progression of problems approach. By thie we mean that for somc morc
difficult problems, we solve a sequence of problems of the form (2.4), with increas-
ingly tight constraints (i.e. lower and upper bounds on the distances). Phase |
is applied only to the first problem (with the loosest constraints), and Phase 2 is
applied to each problem, with the best configurations from the previous, looser-
constrained problem forming the starting set of configurations for Phase 2 for the
next, tighter-constrained problem. The motivation for this approach came from
experimentation. For the easier problems, applying Algorithm 3.1 to the prob-
lem directly was very successful. For the more difficult problems, we noticed that
finding the global minimizer of funetion (2.4) directly was much more difficult than
starting to work on the distance geometry problem with looser distance constraints,
and then gradually tighting the constraints and applied Phase 2 until the expected
accuracy. This is prohahly due ta the constraint relaxation leading to large basing
of attraction for the lowest minimizers. This approach is in some sense similar to
the continuation methods. It has the additional advantage that for real problems,
we may not know exactly how accurate the given distances are, and with this ap-
proach we can find the solutions to the best accuracy that is possible. In fact the
chemists care more about finding reasonable solutions than exact solutions, and
this approach coincides with this idea and yields an algorithm that can he tailared
to find reasonable configurations.

4, Experimental Results

We have run onr algorithm on a set of artificial distance geometry problems from
Moré and Wu [12, 13], and on a set of protein fragment test problems generated
by Hendrickson[9]. In all of these problems, we are given the exact distances. In
order to have both exactly and inexactly constrained problems for function (2.4),
we used

Fi=6(1—¢), ui;=68;(1+¢)

with values of epsilon that are given later. Most of our test problems are large,
with hundreds or thousands of atoms. Therefore in our implementation, we used
the limited memory BFGS algorithm|[11] to perform the full dimensional local mini-
mizations, whereas the small-scale local minimizations within the smali-scale global
optimization step used the standard BFGS method. All the experiments were con-
ducted on an Intel Paragon multiprocessaor.

In the artificial distance geometry problems from [12, 13], the molecule has m = s3
atoms located in the three-dimensional lattice
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{(il,ig,ia)iﬂgil<S,OS’L'2<S,OS’L"3<S}

for some integer s > 1, where the ordering for the atoms is specified by letting atom
i be the atom at position (iy, is, #3),

= 1+ + 510 + 8%i5

The problem is to determine the structure of this molecule if we are given & ; € §,
where

S={(E4):li—-jl < r}

and r is an integer between | and m.

Our first experiment for the artificial problem is to find the global minimizers
using the exact function (2.5), using w; ; = 1 for all (i,j) € 8. First we ran Phase
1 for the molecules with (m, r) = (5%, s?) where 3< s< 7, starting from the domain
space

B={zeR*™ :0< (z)s <s=1,i=1,--,m, k=1,23}
and the domain space
2B={z e R*®™ :0<(z)e <2s—=1),i=1,m k=123

(These are the same problems reported in [12, 13].) One-atom moves were used in
step 1b. The numerical results are presented in Table 4.1, where # fval, #gval and
#global are the number of function and gradient evaluations, the global solutions
out of the total minimizers, respectively. Although Phase 1 can’t find the global
solution in either the smaller domain space or the larger one for the last two prob-
lems, recall that Phase I is simply designed to provide initial configurations for the
second phase, which accounts for most of the work in the algorithm. In our experi-
ence, problemns that can already be solved in Phase 1 are not particularly difficult
global optimization problems. Note also that Phase 1 is in some sense similar to
the multistart algorithm except for the oue-atom or two-atom steps. Compared to
the multistart results in [12], the Phase 1 works quite well in this context.

We also ran the same artificial problems using the exact version of function (2.4),
Le. with € = 0. The Phase | results for these runs are given in Table 4.2. Again,
one-atomn moves were used in step 1b. Table 4.2 shows that using function (2.4),
Phase 1 already finds the global solutions for each problem in both cases. This
indicates that these are not particularly diflicult global optimization problems. The
comparison of these to those in Table 4.1 seems to indicate that using the exact
version of funciion (2.4) creates an easter problem than using function (2.5). We
believe that this is because function (2.4) is smoother. Finally, there is a marked
difference between the results in Table 4.2 and the multistart results given for these
problems and funciion (2.4) in [13], in which the global minimizers were never
found. However these results are not directly comparable because the results in
[13] are for (2.4) with ¢ = 0.1.
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Table 4.1. Phase 1 resulis for Artificial Problems and Function (2.5)

| Problem | Demain B [ Domain 28

| m v | #fval  #gval  #glohal | #feal  #gval  gplobal |
[ 27 9 | 2305 2005 5/15 | 2098 2089 7/15 |
| 84 16| 3820 3445 1/15 | 3814 3441 1/15 |
[ 125 25 ] 5925 5520 1/15 | 5791 5404 3/15 |
| 216 36| 7795 7336 0/15 | 8003 7483 0/15 |
| 343 49 | 10726 10160  0/15 | 10660 101753 0/15 |

Table 4.2. Phase 1 results for Artificial Problems and Function (2.4)

Problem i Domain B | Domain 2B |

m r | #fval  #gval F#global | fival  #pgval  Fglobal |

27D | 18Iz 1443 /15 | 16wy 1398 5/1b
2622 2253 7/15 2403 2091 4/15
125 25 | 3268 2820 4/15%

|

|

| I
| 64 16 | | |
| | | 3231 2764 s |
| 216 36 | 4323 3840 5/15 | 3779 3340 415 |
| 343 49 | | |

5206 4646 3/15 4856 4338 4/15

Tables 4.3 and Table 4.4 give the results from applving Phase 2 to the same set of
artificial problems, again using functions (2.5), and (2.4} with € = 0, respectively.
In these tables, FLS, SLS are the total number of full dimensional and small di-
mensional local optimizations, respectively, and Ffval and Pfval are the number of
full function evaluations and partial {only two atoms change) function evaluations,
respectively. The results show that for function (2.5), applying Phase 2 allows the
method to readily solve the two problems not solved in Phase 1 and to relocate the
global minimizers for all the problems many times. For function (2.4), more than
half the local minimizations find the global minimizer. These results show that
Algorithm 3.1 is very successful on these artificial problems. A comparison with
the efficiency of the method of Moré and Wu [12, 13] is difficult in part because
they do not give costs in the second of these papers, bnt mainly because smoothing
is a very useful technique that makes problems easier to solve, hut has not been
used in our algorithm.
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Table {.3. Phase 2 results for Artificial Problems and Func-
tion (2.5)

| Problem I FLS | #Ffval | SLS | #Pival ! #elobal |

{ 27 | 50 | 2005 | 6779 | 230165 | 23/42 |
| 64 | 50 | 778 | 11616 | 1077940 | 18/39 |
| 125 | s0 | 11570 | 17305 | 1627957 | 6/32 |
| 216 | 50 | 14267 | 24810 | 1834247 | 13/44 |
| | 50 | |

33624 | 15168 | 1827104 | 9/40

Tabie 4.4. Phase 2 results for Artificial Problems and Func-
tion (2.4)

Problem | FLS | #Ffval | SLS | #Pfval | #global |

|

| 2r | B9 | 7202 | 4085 | 248811 | 37/70 |
| 64 | 100 | 10278 | 9333 | 606992 | 58/82 |
| 125 | 100 | 13371 | 18817 | 1338752 | 49/78 |
| 216 | 100 | 15977 | 29439 | 2725847 | s4/01 |
| 243 | 100 | 17850 | 09008 | 4097761 | a7/s1 |
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We then proceeded to a set of significantly more difficult test problems. These
problems are generated by Hendrickson [9] from the bovine pancreatic ribonuclease,
a typieal, rather small protein containing 124 amino acids. Hendrickson derived the
set of twelve test problems by using fragments consisting of the first 20, 40, 60, 80,
and 100 amino acids as well as the full protein, with two sets of distance constraints
for each size. The distance information given for these problems is exact, meaning
that there is a global minimizer where all constraints are satisfied exactly. The
problems have from 63 to 777 atoms (189 to 2331 parameters). Moré aud Wu [13]
tested their method on the smallest of these problerns, using function (2.4), and
reported success for the values ¢ = 0.10, 0.06, 0.04, 0.02, but not below.

For each of the twelve problems of Hendrickson [9], we applied the Phase 2 re-
peatedly to the function (2.4) with decreasing ¢ until ¢ = 0. In our runs, we usually
chose the values e = 0.10, 0.06, 0.04, 0.02, 0.01, 0.00 used by Moré and Wu [13]. For
the two smallest problems, however, we started from 0.02, whereas for the largest
problems, we may find the global solutions for the ¢ = 0.15 subproblem and then
proceed to the ¢ = 0.10 subproblems. For each value of ¢, we generally performed
50 iterations in Phase 2. We applied Phase 1 on the first subproblem only, using
the constrained pair of atom moves in step 1b.

Qur numerical results on the Hendrickson problems are summarized in the Table
4.5. The first two columns record the number of atoms and the given distance
constraints, the third column is last e-problem which we can solve successfully in
the progression of prohlems approach, and the final column is the maximum relative
error of the distances with respect to the ideal distances in our best solution to this
subprohlem, where the maximum relative error is defined as

maad|(|| x: —=; |* /87;) — 1.0} (1,7} €S

Table 4.5 shows that for the first seven problems, which have 63 to 377 atos
(189 to 1131 parameters) we can find the global solutions to the problems. For the
remaining five problems, which have 472 to 777 atoms (1416 to 2331 parameters), we
solve the problems down to relative accuracy levels of between 0.01 and 0.04. These
results indicate that our approach has the potential to locate exact or nearly exact
solutions of quite large distance geometry problems without using any particular
structural information.

Finally, we briefly discuss the costs of Algorithm 3.1 on the protein fragment
problems. We have analyzed the costs of two typical runs for the 63-atom and
102-atom problems. For the 63-atom problem, the entire solution process required
692,488 full function evaluations and 2,416,214 partial fuuction evaluations. For
the 102-atom problem, the entire solution process required 498,500 full function
evaluations and 952,836 partial funclion evalualivns, Detailed timings show that
the full dimensional local optimization steps in Phase 1 and 2 dominate the cost of
the algorithm for these problems, accounting for 80% of the total time. The other
steps are relatively inexpensive, Therefore a cheaper local optimization algorithm
will reduce the total cost of our algorithm. An alternative way to reduce the cost
would be to work in interual coordinates. The advantage of this approach is that
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Table £ 5. Results on Protein Fragment. Prahlems

' Number of Distance Final Final
Atoms Constraints | Subproblemn | Relative Error

| 63 | 236 | 0.00 | 1.0e-6 |
| w2 | 336 | 0.00 | 1.0e-6 |
| 174 | 786 | 0.00 | 8.le 1 |
| 236 | 957 | 0.00 | 8.le-4 |
| 287 | 1319 | 0.00 | 8.1e-4 |
| 382 | 1526 | 0.00 | 8.1e-4 |
| 7T | 1y | 0.00 | 3.7e-3 |
| 472 | 2008 | 0.02 | 0.02 |
| 480 | 2169 | 0.01 | 0.01 |
| 599 | 2532 | 0.01 | 0.01 |
| eé9s | 3283 | 0.04 | 0.04 |
| 777 | 3sma | 0.04 | 0.04 |

the number of variables is greatly rcduced, generally by a factor of ten or more.
Although the problem is no longer partially separable in this parameterization, the
overhead in re-evaluation of the partial funclion and gradient values is relatively
minor comparcd to the reduction in the local optimization cost. A disadvantage of
this approach is that it already uses some structural information of the problem,
namely the primary structure of the protein, which may be considered contrary
to the goal of nsscesing the potential of global optimization methods for general
distance geometry problems.

5. Summary and Future Research

We have presented a new global optimization algorithm intended to solve exactly
or inexactly constrained distance geometry problems. The algorithm utilizes small-
scale global optimization calculations on selected subsets of the parameters, per-
formed by a stochastic global optimization method, as a key part of its approach.
Its structure is related to our previous stochastic/perturbation global optimization
methods for molecular clusters and protein folding, but there are several important
differences. In particular, three algorithmiec choices helped in the success of the
method and none were anticipated by us initially. The first is to expand the config-
uration before each small-scale global optimization. The second is to sclect a linked
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pair of atoms rather than a single atom as the parameters for the small-scale global
optimization. The third is to solve a progression of distance geometry problems
where the constraint bounds become tighter and tighter.

Our computational tests on artificial problems with up to 343 atoms (1029 vari-
ables) and on more difficult protein fragment problems with up to 777 atoms (2331
variableg) indicate that the method is very successful in located the configurations
satisfying the given distance constraints. The results on the protein problems espe-
cially indicate that the method is guite successful in solving large and apparently
difficult distance geametry prablems without using any information about the so-
lution structure.

There are many directions for continuing this research that we are considering.
One is to nse more than twn atoms in the small-scale global aptimization step
of Phase 2. While this increases the cost of the small-scale global optimization,
this is not a dominant cost, and with such a strategy we were able to solve the
480 atom problem at the suhproblem 0100 level. A second possible direction is
to use a buildup approach, where one finds (approximate) solutions to subsets
of the problem on the way to solving the full problem. The third, and perhaps
most intriguing direction, is to comhine a smonthing approach like thal of Moré
and Wu [12, 13] with our stochastic/perturbation global optimization technique.
Our recent research in protein folding has shown that this cornbination has great
patential. Finally, if this stochastic/perturbation approach were to be part of a
production distance geometry code, one would want to find ways to combine it
with the chemieal structural knowledge that chemists use in the solution of these
problerns.
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